Check of Modelica.Electrical.Analog.Examples.Lines.LightningSegmentedTransmissionLine
The model has the same number of unknowns and equations: 6477
Check of Modelica.Electrical.Analog.Examples.Lines.LightningSegmentedTransmissionLine successful.
| MSL410 experiment tolerance | MSL410 tightend tolerance | |
|---|---|---|
| Testrun ID | 20250225023730 | 20250224233152 |
| Simulator | Dymola | Dymola |
| Status | PASS | PASS |
| Run time | 17.26 | 17.30 |
| Workdir | D:/MSL_Nightly/Output/Testruns/Dymola/Modelica_org\Modelica.Electrical.Analog.Examples.Lines.LightningSegmentedTransmissionLine\WorkDir | D:/MSL_Nightly/Output/Testruns/Dymola/Modelica\Modelica.Electrical.Analog.Examples.Lines.LightningSegmentedTransmissionLine\WorkDir |
| MSL410 experiment tolerance | MSL410 tightend tolerance | |
|---|---|---|
| Status | PASS | PASS |
| Task runtime | 1.01 s | 1.03 s |
| Warnings | 0 | 0 |
| Errors | 0 | 0 |
| Open log  | Open log  |
| MSL410 experiment tolerance | MSL410 tightend tolerance | |
|---|---|---|
| Status | PASS | PASS |
| Task runtime | 4.04 s | 4.05 s |
| Warnings | 0 | 0 |
| Errors | 0 | 0 |
| Open log  | Open log  | |
| Numerical Jacobians | 0 | 0 |
| Continuous time states | 401 | 401 |
| Number NL equation systems | 0 | 0 |
| Largest NL equation system | 0 | 0 |
| MSL410 experiment tolerance | MSL410 tightend tolerance | |
|---|---|---|
| Status | PASS | PASS |
| Task runtime | 12.17 s | 12.20 s |
| Simulation time | 0.03 s | 0.03 s |
| Copy result file path  | Copy result file path  | |
| Open log  | Open log  | |
| Time Events | 1 | 1 |
| State Events | 0 | 0 |
| Jacobian evaluations | 989 | 989 |
| Integrator Steps | 53872 | 53872 |
| Total CPU time | 11.70 s | 11.70 s |
| CPU time Integration | 11.70 s | 11.70 s |
| CPU time Initialization | 0.00 s | 0.00 s |
check - Open log
Check of Modelica.Electrical.Analog.Examples.Lines.LightningSegmentedTransmissionLine
The model has the same number of unknowns and equations: 6477
Check of Modelica.Electrical.Analog.Examples.Lines.LightningSegmentedTransmissionLine successful.
check - Open log
Check of Modelica.Electrical.Analog.Examples.Lines.LightningSegmentedTransmissionLine
The model has the same number of unknowns and equations: 6477
Check of Modelica.Electrical.Analog.Examples.Lines.LightningSegmentedTransmissionLine successful.
translate - Open log
Translation of Modelica.Electrical.Analog.Examples.Lines.LightningSegmentedTransmissionLine
The DAE has 6477 scalar unknowns and 6477 scalar equations.
Statistics
Original Model
Number of components: 813
Variables: 8560
Parameters: 2481 (2881 scalars)
Unknowns: 6079 (6477 scalars)
Differentiated variables: 402 scalars
Equations: 4875
Nontrivial: 4061
Translated Model
Constants: 817 scalars
Free parameters: 26 scalars
Parameter depending: 2847 scalars
Continuous time states: 401 scalars
Time-varying variables: 1818 scalars
Alias variables: 3850 scalars
Number of mixed real/discrete systems of equations: 0
Sizes of linear systems of equations: {4}
Sizes after manipulation of the linear systems: {0}
Sizes of nonlinear systems of equations: { }
Sizes after manipulation of the nonlinear systems: { }
Number of numerical Jacobians: 0
Initialization problem
Sizes of nonlinear systems of equations: {5}
Sizes after manipulation of the nonlinear systems: {4}
Number of numerical Jacobians: 0
Settings
Advanced.StoreProtectedVariables = true
Sparse solvers enabled: false
Enabled for integrator Jacobian: false
Model sparse and large enough: true.
Sparse solvers are available for dassl, lsodar, cvode, ida, radau, esdirk*, sdirk*.
Enable sparse solvers by setting Advanced.Translation.SparseActivate.
Selected continuous time states
Statically selected continuous time states
line1.C[1].v
line1.C[2].v
line1.C[3].v
line1.C[4].v
line1.C[5].v
line1.C[6].v
line1.C[7].v
line1.C[8].v
line1.C[9].v
line1.C[10].v
line1.C[11].v
line1.C[12].v
line1.C[13].v
line1.C[14].v
line1.C[15].v
line1.C[16].v
line1.C[17].v
line1.C[18].v
line1.C[19].v
line1.C[20].v
line1.C[21].v
line1.C[22].v
line1.C[23].v
line1.C[24].v
line1.C[25].v
line1.C[26].v
line1.C[27].v
line1.C[28].v
line1.C[29].v
line1.C[30].v
line1.C[31].v
line1.C[32].v
line1.C[33].v
line1.C[34].v
line1.C[35].v
line1.C[36].v
line1.C[37].v
line1.C[38].v
line1.C[39].v
line1.C[40].v
line1.C[41].v
line1.C[42].v
line1.C[43].v
line1.C[44].v
line1.C[45].v
line1.C[46].v
line1.C[47].v
line1.C[48].v
line1.C[49].v
line1.C[50].v
line1.C[51].v
line1.C[52].v
line1.C[53].v
line1.C[54].v
line1.C[55].v
line1.C[56].v
line1.C[57].v
line1.C[58].v
line1.C[59].v
line1.C[60].v
line1.C[61].v
line1.C[62].v
line1.C[63].v
line1.C[64].v
line1.C[65].v
line1.C[66].v
line1.C[67].v
line1.C[68].v
line1.C[69].v
line1.C[70].v
line1.C[71].v
line1.C[72].v
line1.C[73].v
line1.C[74].v
line1.C[75].v
line1.C[76].v
line1.C[77].v
line1.C[78].v
line1.C[79].v
line1.C[80].v
line1.C[81].v
line1.C[82].v
line1.C[83].v
line1.C[84].v
line1.C[85].v
line1.C[86].v
line1.C[87].v
line1.C[88].v
line1.C[89].v
line1.C[90].v
line1.C[91].v
line1.C[92].v
line1.C[93].v
line1.C[94].v
line1.C[95].v
line1.C[96].v
line1.C[97].v
line1.C[98].v
line1.C[99].v
line1.C[100].v
line1.L[1].i
line1.L[2].i
line1.L[3].i
line1.L[4].i
line1.L[5].i
line1.L[6].i
line1.L[7].i
line1.L[8].i
line1.L[9].i
line1.L[10].i
line1.L[11].i
line1.L[12].i
line1.L[13].i
line1.L[14].i
line1.L[15].i
line1.L[16].i
line1.L[17].i
line1.L[18].i
line1.L[19].i
line1.L[20].i
line1.L[21].i
line1.L[22].i
line1.L[23].i
line1.L[24].i
line1.L[25].i
line1.L[26].i
line1.L[27].i
line1.L[28].i
line1.L[29].i
line1.L[30].i
line1.L[31].i
line1.L[32].i
line1.L[33].i
line1.L[34].i
line1.L[35].i
line1.L[36].i
line1.L[37].i
line1.L[38].i
line1.L[39].i
line1.L[40].i
line1.L[41].i
line1.L[42].i
line1.L[43].i
line1.L[44].i
line1.L[45].i
line1.L[46].i
line1.L[47].i
line1.L[48].i
line1.L[49].i
line1.L[50].i
line1.L[51].i
line1.L[52].i
line1.L[53].i
line1.L[54].i
line1.L[55].i
line1.L[56].i
line1.L[57].i
line1.L[58].i
line1.L[59].i
line1.L[60].i
line1.L[61].i
line1.L[62].i
line1.L[63].i
line1.L[64].i
line1.L[65].i
line1.L[66].i
line1.L[67].i
line1.L[68].i
line1.L[69].i
line1.L[70].i
line1.L[71].i
line1.L[72].i
line1.L[73].i
line1.L[74].i
line1.L[75].i
line1.L[76].i
line1.L[77].i
line1.L[78].i
line1.L[79].i
line1.L[80].i
line1.L[81].i
line1.L[82].i
line1.L[83].i
line1.L[84].i
line1.L[85].i
line1.L[86].i
line1.L[87].i
line1.L[88].i
line1.L[89].i
line1.L[90].i
line1.L[91].i
line1.L[92].i
line1.L[93].i
line1.L[94].i
line1.L[95].i
line1.L[96].i
line1.L[97].i
line1.L[98].i
line1.L[99].i
line1.L[100].i
line1.L[101].i
line2.C[1].v
line2.C[2].v
line2.C[3].v
line2.C[4].v
line2.C[5].v
line2.C[6].v
line2.C[7].v
line2.C[8].v
line2.C[9].v
line2.C[10].v
line2.C[11].v
line2.C[12].v
line2.C[13].v
line2.C[14].v
line2.C[15].v
line2.C[16].v
line2.C[17].v
line2.C[18].v
line2.C[19].v
line2.C[20].v
line2.C[21].v
line2.C[22].v
line2.C[23].v
line2.C[24].v
line2.C[25].v
line2.C[26].v
line2.C[27].v
line2.C[28].v
line2.C[29].v
line2.C[30].v
line2.C[31].v
line2.C[32].v
line2.C[33].v
line2.C[34].v
line2.C[35].v
line2.C[36].v
line2.C[37].v
line2.C[38].v
line2.C[39].v
line2.C[40].v
line2.C[41].v
line2.C[42].v
line2.C[43].v
line2.C[44].v
line2.C[45].v
line2.C[46].v
line2.C[47].v
line2.C[48].v
line2.C[49].v
line2.C[50].v
line2.C[51].v
line2.C[52].v
line2.C[53].v
line2.C[54].v
line2.C[55].v
line2.C[56].v
line2.C[57].v
line2.C[58].v
line2.C[59].v
line2.C[60].v
line2.C[61].v
line2.C[62].v
line2.C[63].v
line2.C[64].v
line2.C[65].v
line2.C[66].v
line2.C[67].v
line2.C[68].v
line2.C[69].v
line2.C[70].v
line2.C[71].v
line2.C[72].v
line2.C[73].v
line2.C[74].v
line2.C[75].v
line2.C[76].v
line2.C[77].v
line2.C[78].v
line2.C[79].v
line2.C[80].v
line2.C[81].v
line2.C[82].v
line2.C[83].v
line2.C[84].v
line2.C[85].v
line2.C[86].v
line2.C[87].v
line2.C[88].v
line2.C[89].v
line2.C[90].v
line2.C[91].v
line2.C[92].v
line2.C[93].v
line2.C[94].v
line2.C[95].v
line2.C[96].v
line2.C[97].v
line2.C[98].v
line2.C[99].v
line2.C[100].v
line2.L[2].i
line2.L[3].i
line2.L[4].i
line2.L[5].i
line2.L[6].i
line2.L[7].i
line2.L[8].i
line2.L[9].i
line2.L[10].i
line2.L[11].i
line2.L[12].i
line2.L[13].i
line2.L[14].i
line2.L[15].i
line2.L[16].i
line2.L[17].i
line2.L[18].i
line2.L[19].i
line2.L[20].i
line2.L[21].i
line2.L[22].i
line2.L[23].i
line2.L[24].i
line2.L[25].i
line2.L[26].i
line2.L[27].i
line2.L[28].i
line2.L[29].i
line2.L[30].i
line2.L[31].i
line2.L[32].i
line2.L[33].i
line2.L[34].i
line2.L[35].i
line2.L[36].i
line2.L[37].i
line2.L[38].i
line2.L[39].i
line2.L[40].i
line2.L[41].i
line2.L[42].i
line2.L[43].i
line2.L[44].i
line2.L[45].i
line2.L[46].i
line2.L[47].i
line2.L[48].i
line2.L[49].i
line2.L[50].i
line2.L[51].i
line2.L[52].i
line2.L[53].i
line2.L[54].i
line2.L[55].i
line2.L[56].i
line2.L[57].i
line2.L[58].i
line2.L[59].i
line2.L[60].i
line2.L[61].i
line2.L[62].i
line2.L[63].i
line2.L[64].i
line2.L[65].i
line2.L[66].i
line2.L[67].i
line2.L[68].i
line2.L[69].i
line2.L[70].i
line2.L[71].i
line2.L[72].i
line2.L[73].i
line2.L[74].i
line2.L[75].i
line2.L[76].i
line2.L[77].i
line2.L[78].i
line2.L[79].i
line2.L[80].i
line2.L[81].i
line2.L[82].i
line2.L[83].i
line2.L[84].i
line2.L[85].i
line2.L[86].i
line2.L[87].i
line2.L[88].i
line2.L[89].i
line2.L[90].i
line2.L[91].i
line2.L[92].i
line2.L[93].i
line2.L[94].i
line2.L[95].i
line2.L[96].i
line2.L[97].i
line2.L[98].i
line2.L[99].i
line2.L[100].i
line2.L[101].i
Finished
translate - Open log
Translation of Modelica.Electrical.Analog.Examples.Lines.LightningSegmentedTransmissionLine
The DAE has 6477 scalar unknowns and 6477 scalar equations.
Statistics
Original Model
Number of components: 813
Variables: 8560
Parameters: 2481 (2881 scalars)
Unknowns: 6079 (6477 scalars)
Differentiated variables: 402 scalars
Equations: 4875
Nontrivial: 4061
Translated Model
Constants: 817 scalars
Free parameters: 26 scalars
Parameter depending: 2847 scalars
Continuous time states: 401 scalars
Time-varying variables: 1818 scalars
Alias variables: 3850 scalars
Number of mixed real/discrete systems of equations: 0
Sizes of linear systems of equations: {4}
Sizes after manipulation of the linear systems: {0}
Sizes of nonlinear systems of equations: { }
Sizes after manipulation of the nonlinear systems: { }
Number of numerical Jacobians: 0
Initialization problem
Sizes of nonlinear systems of equations: {5}
Sizes after manipulation of the nonlinear systems: {4}
Number of numerical Jacobians: 0
Settings
Advanced.StoreProtectedVariables = true
Sparse solvers enabled: false
Enabled for integrator Jacobian: false
Model sparse and large enough: true.
Sparse solvers are available for dassl, lsodar, cvode, ida, radau, esdirk*, sdirk*.
Enable sparse solvers by setting Advanced.Translation.SparseActivate.
Selected continuous time states
Statically selected continuous time states
line1.C[1].v
line1.C[2].v
line1.C[3].v
line1.C[4].v
line1.C[5].v
line1.C[6].v
line1.C[7].v
line1.C[8].v
line1.C[9].v
line1.C[10].v
line1.C[11].v
line1.C[12].v
line1.C[13].v
line1.C[14].v
line1.C[15].v
line1.C[16].v
line1.C[17].v
line1.C[18].v
line1.C[19].v
line1.C[20].v
line1.C[21].v
line1.C[22].v
line1.C[23].v
line1.C[24].v
line1.C[25].v
line1.C[26].v
line1.C[27].v
line1.C[28].v
line1.C[29].v
line1.C[30].v
line1.C[31].v
line1.C[32].v
line1.C[33].v
line1.C[34].v
line1.C[35].v
line1.C[36].v
line1.C[37].v
line1.C[38].v
line1.C[39].v
line1.C[40].v
line1.C[41].v
line1.C[42].v
line1.C[43].v
line1.C[44].v
line1.C[45].v
line1.C[46].v
line1.C[47].v
line1.C[48].v
line1.C[49].v
line1.C[50].v
line1.C[51].v
line1.C[52].v
line1.C[53].v
line1.C[54].v
line1.C[55].v
line1.C[56].v
line1.C[57].v
line1.C[58].v
line1.C[59].v
line1.C[60].v
line1.C[61].v
line1.C[62].v
line1.C[63].v
line1.C[64].v
line1.C[65].v
line1.C[66].v
line1.C[67].v
line1.C[68].v
line1.C[69].v
line1.C[70].v
line1.C[71].v
line1.C[72].v
line1.C[73].v
line1.C[74].v
line1.C[75].v
line1.C[76].v
line1.C[77].v
line1.C[78].v
line1.C[79].v
line1.C[80].v
line1.C[81].v
line1.C[82].v
line1.C[83].v
line1.C[84].v
line1.C[85].v
line1.C[86].v
line1.C[87].v
line1.C[88].v
line1.C[89].v
line1.C[90].v
line1.C[91].v
line1.C[92].v
line1.C[93].v
line1.C[94].v
line1.C[95].v
line1.C[96].v
line1.C[97].v
line1.C[98].v
line1.C[99].v
line1.C[100].v
line1.L[1].i
line1.L[2].i
line1.L[3].i
line1.L[4].i
line1.L[5].i
line1.L[6].i
line1.L[7].i
line1.L[8].i
line1.L[9].i
line1.L[10].i
line1.L[11].i
line1.L[12].i
line1.L[13].i
line1.L[14].i
line1.L[15].i
line1.L[16].i
line1.L[17].i
line1.L[18].i
line1.L[19].i
line1.L[20].i
line1.L[21].i
line1.L[22].i
line1.L[23].i
line1.L[24].i
line1.L[25].i
line1.L[26].i
line1.L[27].i
line1.L[28].i
line1.L[29].i
line1.L[30].i
line1.L[31].i
line1.L[32].i
line1.L[33].i
line1.L[34].i
line1.L[35].i
line1.L[36].i
line1.L[37].i
line1.L[38].i
line1.L[39].i
line1.L[40].i
line1.L[41].i
line1.L[42].i
line1.L[43].i
line1.L[44].i
line1.L[45].i
line1.L[46].i
line1.L[47].i
line1.L[48].i
line1.L[49].i
line1.L[50].i
line1.L[51].i
line1.L[52].i
line1.L[53].i
line1.L[54].i
line1.L[55].i
line1.L[56].i
line1.L[57].i
line1.L[58].i
line1.L[59].i
line1.L[60].i
line1.L[61].i
line1.L[62].i
line1.L[63].i
line1.L[64].i
line1.L[65].i
line1.L[66].i
line1.L[67].i
line1.L[68].i
line1.L[69].i
line1.L[70].i
line1.L[71].i
line1.L[72].i
line1.L[73].i
line1.L[74].i
line1.L[75].i
line1.L[76].i
line1.L[77].i
line1.L[78].i
line1.L[79].i
line1.L[80].i
line1.L[81].i
line1.L[82].i
line1.L[83].i
line1.L[84].i
line1.L[85].i
line1.L[86].i
line1.L[87].i
line1.L[88].i
line1.L[89].i
line1.L[90].i
line1.L[91].i
line1.L[92].i
line1.L[93].i
line1.L[94].i
line1.L[95].i
line1.L[96].i
line1.L[97].i
line1.L[98].i
line1.L[99].i
line1.L[100].i
line1.L[101].i
line2.C[1].v
line2.C[2].v
line2.C[3].v
line2.C[4].v
line2.C[5].v
line2.C[6].v
line2.C[7].v
line2.C[8].v
line2.C[9].v
line2.C[10].v
line2.C[11].v
line2.C[12].v
line2.C[13].v
line2.C[14].v
line2.C[15].v
line2.C[16].v
line2.C[17].v
line2.C[18].v
line2.C[19].v
line2.C[20].v
line2.C[21].v
line2.C[22].v
line2.C[23].v
line2.C[24].v
line2.C[25].v
line2.C[26].v
line2.C[27].v
line2.C[28].v
line2.C[29].v
line2.C[30].v
line2.C[31].v
line2.C[32].v
line2.C[33].v
line2.C[34].v
line2.C[35].v
line2.C[36].v
line2.C[37].v
line2.C[38].v
line2.C[39].v
line2.C[40].v
line2.C[41].v
line2.C[42].v
line2.C[43].v
line2.C[44].v
line2.C[45].v
line2.C[46].v
line2.C[47].v
line2.C[48].v
line2.C[49].v
line2.C[50].v
line2.C[51].v
line2.C[52].v
line2.C[53].v
line2.C[54].v
line2.C[55].v
line2.C[56].v
line2.C[57].v
line2.C[58].v
line2.C[59].v
line2.C[60].v
line2.C[61].v
line2.C[62].v
line2.C[63].v
line2.C[64].v
line2.C[65].v
line2.C[66].v
line2.C[67].v
line2.C[68].v
line2.C[69].v
line2.C[70].v
line2.C[71].v
line2.C[72].v
line2.C[73].v
line2.C[74].v
line2.C[75].v
line2.C[76].v
line2.C[77].v
line2.C[78].v
line2.C[79].v
line2.C[80].v
line2.C[81].v
line2.C[82].v
line2.C[83].v
line2.C[84].v
line2.C[85].v
line2.C[86].v
line2.C[87].v
line2.C[88].v
line2.C[89].v
line2.C[90].v
line2.C[91].v
line2.C[92].v
line2.C[93].v
line2.C[94].v
line2.C[95].v
line2.C[96].v
line2.C[97].v
line2.C[98].v
line2.C[99].v
line2.C[100].v
line2.L[2].i
line2.L[3].i
line2.L[4].i
line2.L[5].i
line2.L[6].i
line2.L[7].i
line2.L[8].i
line2.L[9].i
line2.L[10].i
line2.L[11].i
line2.L[12].i
line2.L[13].i
line2.L[14].i
line2.L[15].i
line2.L[16].i
line2.L[17].i
line2.L[18].i
line2.L[19].i
line2.L[20].i
line2.L[21].i
line2.L[22].i
line2.L[23].i
line2.L[24].i
line2.L[25].i
line2.L[26].i
line2.L[27].i
line2.L[28].i
line2.L[29].i
line2.L[30].i
line2.L[31].i
line2.L[32].i
line2.L[33].i
line2.L[34].i
line2.L[35].i
line2.L[36].i
line2.L[37].i
line2.L[38].i
line2.L[39].i
line2.L[40].i
line2.L[41].i
line2.L[42].i
line2.L[43].i
line2.L[44].i
line2.L[45].i
line2.L[46].i
line2.L[47].i
line2.L[48].i
line2.L[49].i
line2.L[50].i
line2.L[51].i
line2.L[52].i
line2.L[53].i
line2.L[54].i
line2.L[55].i
line2.L[56].i
line2.L[57].i
line2.L[58].i
line2.L[59].i
line2.L[60].i
line2.L[61].i
line2.L[62].i
line2.L[63].i
line2.L[64].i
line2.L[65].i
line2.L[66].i
line2.L[67].i
line2.L[68].i
line2.L[69].i
line2.L[70].i
line2.L[71].i
line2.L[72].i
line2.L[73].i
line2.L[74].i
line2.L[75].i
line2.L[76].i
line2.L[77].i
line2.L[78].i
line2.L[79].i
line2.L[80].i
line2.L[81].i
line2.L[82].i
line2.L[83].i
line2.L[84].i
line2.L[85].i
line2.L[86].i
line2.L[87].i
line2.L[88].i
line2.L[89].i
line2.L[90].i
line2.L[91].i
line2.L[92].i
line2.L[93].i
line2.L[94].i
line2.L[95].i
line2.L[96].i
line2.L[97].i
line2.L[98].i
line2.L[99].i
line2.L[100].i
line2.L[101].i
Finished
translate - Continuous time states
- line1.C[1].v
- line1.C[2].v
- line1.C[3].v
- line1.C[4].v
- line1.C[5].v
- line1.C[6].v
- line1.C[7].v
- line1.C[8].v
- line1.C[9].v
- line1.C[10].v
- line1.C[11].v
- line1.C[12].v
- line1.C[13].v
- line1.C[14].v
- line1.C[15].v
- line1.C[16].v
- line1.C[17].v
- line1.C[18].v
- line1.C[19].v
- line1.C[20].v
- line1.C[21].v
- line1.C[22].v
- line1.C[23].v
- line1.C[24].v
- line1.C[25].v
- line1.C[26].v
- line1.C[27].v
- line1.C[28].v
- line1.C[29].v
- line1.C[30].v
- line1.C[31].v
- line1.C[32].v
- line1.C[33].v
- line1.C[34].v
- line1.C[35].v
- line1.C[36].v
- line1.C[37].v
- line1.C[38].v
- line1.C[39].v
- line1.C[40].v
- line1.C[41].v
- line1.C[42].v
- line1.C[43].v
- line1.C[44].v
- line1.C[45].v
- line1.C[46].v
- line1.C[47].v
- line1.C[48].v
- line1.C[49].v
- line1.C[50].v
- line1.C[51].v
- line1.C[52].v
- line1.C[53].v
- line1.C[54].v
- line1.C[55].v
- line1.C[56].v
- line1.C[57].v
- line1.C[58].v
- line1.C[59].v
- line1.C[60].v
- line1.C[61].v
- line1.C[62].v
- line1.C[63].v
- line1.C[64].v
- line1.C[65].v
- line1.C[66].v
- line1.C[67].v
- line1.C[68].v
- line1.C[69].v
- line1.C[70].v
- line1.C[71].v
- line1.C[72].v
- line1.C[73].v
- line1.C[74].v
- line1.C[75].v
- line1.C[76].v
- line1.C[77].v
- line1.C[78].v
- line1.C[79].v
- line1.C[80].v
- line1.C[81].v
- line1.C[82].v
- line1.C[83].v
- line1.C[84].v
- line1.C[85].v
- line1.C[86].v
- line1.C[87].v
- line1.C[88].v
- line1.C[89].v
- line1.C[90].v
- line1.C[91].v
- line1.C[92].v
- line1.C[93].v
- line1.C[94].v
- line1.C[95].v
- line1.C[96].v
- line1.C[97].v
- line1.C[98].v
- line1.C[99].v
- line1.C[100].v
- line1.L[1].i
- line1.L[2].i
- line1.L[3].i
- line1.L[4].i
- line1.L[5].i
- line1.L[6].i
- line1.L[7].i
- line1.L[8].i
- line1.L[9].i
- line1.L[10].i
- line1.L[11].i
- line1.L[12].i
- line1.L[13].i
- line1.L[14].i
- line1.L[15].i
- line1.L[16].i
- line1.L[17].i
- line1.L[18].i
- line1.L[19].i
- line1.L[20].i
- line1.L[21].i
- line1.L[22].i
- line1.L[23].i
- line1.L[24].i
- line1.L[25].i
- line1.L[26].i
- line1.L[27].i
- line1.L[28].i
- line1.L[29].i
- line1.L[30].i
- line1.L[31].i
- line1.L[32].i
- line1.L[33].i
- line1.L[34].i
- line1.L[35].i
- line1.L[36].i
- line1.L[37].i
- line1.L[38].i
- line1.L[39].i
- line1.L[40].i
- line1.L[41].i
- line1.L[42].i
- line1.L[43].i
- line1.L[44].i
- line1.L[45].i
- line1.L[46].i
- line1.L[47].i
- line1.L[48].i
- line1.L[49].i
- line1.L[50].i
- line1.L[51].i
- line1.L[52].i
- line1.L[53].i
- line1.L[54].i
- line1.L[55].i
- line1.L[56].i
- line1.L[57].i
- line1.L[58].i
- line1.L[59].i
- line1.L[60].i
- line1.L[61].i
- line1.L[62].i
- line1.L[63].i
- line1.L[64].i
- line1.L[65].i
- line1.L[66].i
- line1.L[67].i
- line1.L[68].i
- line1.L[69].i
- line1.L[70].i
- line1.L[71].i
- line1.L[72].i
- line1.L[73].i
- line1.L[74].i
- line1.L[75].i
- line1.L[76].i
- line1.L[77].i
- line1.L[78].i
- line1.L[79].i
- line1.L[80].i
- line1.L[81].i
- line1.L[82].i
- line1.L[83].i
- line1.L[84].i
- line1.L[85].i
- line1.L[86].i
- line1.L[87].i
- line1.L[88].i
- line1.L[89].i
- line1.L[90].i
- line1.L[91].i
- line1.L[92].i
- line1.L[93].i
- line1.L[94].i
- line1.L[95].i
- line1.L[96].i
- line1.L[97].i
- line1.L[98].i
- line1.L[99].i
- line1.L[100].i
- line1.L[101].i
- line2.C[1].v
- line2.C[2].v
- line2.C[3].v
- line2.C[4].v
- line2.C[5].v
- line2.C[6].v
- line2.C[7].v
- line2.C[8].v
- line2.C[9].v
- line2.C[10].v
- line2.C[11].v
- line2.C[12].v
- line2.C[13].v
- line2.C[14].v
- line2.C[15].v
- line2.C[16].v
- line2.C[17].v
- line2.C[18].v
- line2.C[19].v
- line2.C[20].v
- line2.C[21].v
- line2.C[22].v
- line2.C[23].v
- line2.C[24].v
- line2.C[25].v
- line2.C[26].v
- line2.C[27].v
- line2.C[28].v
- line2.C[29].v
- line2.C[30].v
- line2.C[31].v
- line2.C[32].v
- line2.C[33].v
- line2.C[34].v
- line2.C[35].v
- line2.C[36].v
- line2.C[37].v
- line2.C[38].v
- line2.C[39].v
- line2.C[40].v
- line2.C[41].v
- line2.C[42].v
- line2.C[43].v
- line2.C[44].v
- line2.C[45].v
- line2.C[46].v
- line2.C[47].v
- line2.C[48].v
- line2.C[49].v
- line2.C[50].v
- line2.C[51].v
- line2.C[52].v
- line2.C[53].v
- line2.C[54].v
- line2.C[55].v
- line2.C[56].v
- line2.C[57].v
- line2.C[58].v
- line2.C[59].v
- line2.C[60].v
- line2.C[61].v
- line2.C[62].v
- line2.C[63].v
- line2.C[64].v
- line2.C[65].v
- line2.C[66].v
- line2.C[67].v
- line2.C[68].v
- line2.C[69].v
- line2.C[70].v
- line2.C[71].v
- line2.C[72].v
- line2.C[73].v
- line2.C[74].v
- line2.C[75].v
- line2.C[76].v
- line2.C[77].v
- line2.C[78].v
- line2.C[79].v
- line2.C[80].v
- line2.C[81].v
- line2.C[82].v
- line2.C[83].v
- line2.C[84].v
- line2.C[85].v
- line2.C[86].v
- line2.C[87].v
- line2.C[88].v
- line2.C[89].v
- line2.C[90].v
- line2.C[91].v
- line2.C[92].v
- line2.C[93].v
- line2.C[94].v
- line2.C[95].v
- line2.C[96].v
- line2.C[97].v
- line2.C[98].v
- line2.C[99].v
- line2.C[100].v
- line2.L[2].i
- line2.L[3].i
- line2.L[4].i
- line2.L[5].i
- line2.L[6].i
- line2.L[7].i
- line2.L[8].i
- line2.L[9].i
- line2.L[10].i
- line2.L[11].i
- line2.L[12].i
- line2.L[13].i
- line2.L[14].i
- line2.L[15].i
- line2.L[16].i
- line2.L[17].i
- line2.L[18].i
- line2.L[19].i
- line2.L[20].i
- line2.L[21].i
- line2.L[22].i
- line2.L[23].i
- line2.L[24].i
- line2.L[25].i
- line2.L[26].i
- line2.L[27].i
- line2.L[28].i
- line2.L[29].i
- line2.L[30].i
- line2.L[31].i
- line2.L[32].i
- line2.L[33].i
- line2.L[34].i
- line2.L[35].i
- line2.L[36].i
- line2.L[37].i
- line2.L[38].i
- line2.L[39].i
- line2.L[40].i
- line2.L[41].i
- line2.L[42].i
- line2.L[43].i
- line2.L[44].i
- line2.L[45].i
- line2.L[46].i
- line2.L[47].i
- line2.L[48].i
- line2.L[49].i
- line2.L[50].i
- line2.L[51].i
- line2.L[52].i
- line2.L[53].i
- line2.L[54].i
- line2.L[55].i
- line2.L[56].i
- line2.L[57].i
- line2.L[58].i
- line2.L[59].i
- line2.L[60].i
- line2.L[61].i
- line2.L[62].i
- line2.L[63].i
- line2.L[64].i
- line2.L[65].i
- line2.L[66].i
- line2.L[67].i
- line2.L[68].i
- line2.L[69].i
- line2.L[70].i
- line2.L[71].i
- line2.L[72].i
- line2.L[73].i
- line2.L[74].i
- line2.L[75].i
- line2.L[76].i
- line2.L[77].i
- line2.L[78].i
- line2.L[79].i
- line2.L[80].i
- line2.L[81].i
- line2.L[82].i
- line2.L[83].i
- line2.L[84].i
- line2.L[85].i
- line2.L[86].i
- line2.L[87].i
- line2.L[88].i
- line2.L[89].i
- line2.L[90].i
- line2.L[91].i
- line2.L[92].i
- line2.L[93].i
- line2.L[94].i
- line2.L[95].i
- line2.L[96].i
- line2.L[97].i
- line2.L[98].i
- line2.L[99].i
- line2.L[100].i
- line2.L[101].i
translate - Continuous time states
- line1.C[1].v
- line1.C[2].v
- line1.C[3].v
- line1.C[4].v
- line1.C[5].v
- line1.C[6].v
- line1.C[7].v
- line1.C[8].v
- line1.C[9].v
- line1.C[10].v
- line1.C[11].v
- line1.C[12].v
- line1.C[13].v
- line1.C[14].v
- line1.C[15].v
- line1.C[16].v
- line1.C[17].v
- line1.C[18].v
- line1.C[19].v
- line1.C[20].v
- line1.C[21].v
- line1.C[22].v
- line1.C[23].v
- line1.C[24].v
- line1.C[25].v
- line1.C[26].v
- line1.C[27].v
- line1.C[28].v
- line1.C[29].v
- line1.C[30].v
- line1.C[31].v
- line1.C[32].v
- line1.C[33].v
- line1.C[34].v
- line1.C[35].v
- line1.C[36].v
- line1.C[37].v
- line1.C[38].v
- line1.C[39].v
- line1.C[40].v
- line1.C[41].v
- line1.C[42].v
- line1.C[43].v
- line1.C[44].v
- line1.C[45].v
- line1.C[46].v
- line1.C[47].v
- line1.C[48].v
- line1.C[49].v
- line1.C[50].v
- line1.C[51].v
- line1.C[52].v
- line1.C[53].v
- line1.C[54].v
- line1.C[55].v
- line1.C[56].v
- line1.C[57].v
- line1.C[58].v
- line1.C[59].v
- line1.C[60].v
- line1.C[61].v
- line1.C[62].v
- line1.C[63].v
- line1.C[64].v
- line1.C[65].v
- line1.C[66].v
- line1.C[67].v
- line1.C[68].v
- line1.C[69].v
- line1.C[70].v
- line1.C[71].v
- line1.C[72].v
- line1.C[73].v
- line1.C[74].v
- line1.C[75].v
- line1.C[76].v
- line1.C[77].v
- line1.C[78].v
- line1.C[79].v
- line1.C[80].v
- line1.C[81].v
- line1.C[82].v
- line1.C[83].v
- line1.C[84].v
- line1.C[85].v
- line1.C[86].v
- line1.C[87].v
- line1.C[88].v
- line1.C[89].v
- line1.C[90].v
- line1.C[91].v
- line1.C[92].v
- line1.C[93].v
- line1.C[94].v
- line1.C[95].v
- line1.C[96].v
- line1.C[97].v
- line1.C[98].v
- line1.C[99].v
- line1.C[100].v
- line1.L[1].i
- line1.L[2].i
- line1.L[3].i
- line1.L[4].i
- line1.L[5].i
- line1.L[6].i
- line1.L[7].i
- line1.L[8].i
- line1.L[9].i
- line1.L[10].i
- line1.L[11].i
- line1.L[12].i
- line1.L[13].i
- line1.L[14].i
- line1.L[15].i
- line1.L[16].i
- line1.L[17].i
- line1.L[18].i
- line1.L[19].i
- line1.L[20].i
- line1.L[21].i
- line1.L[22].i
- line1.L[23].i
- line1.L[24].i
- line1.L[25].i
- line1.L[26].i
- line1.L[27].i
- line1.L[28].i
- line1.L[29].i
- line1.L[30].i
- line1.L[31].i
- line1.L[32].i
- line1.L[33].i
- line1.L[34].i
- line1.L[35].i
- line1.L[36].i
- line1.L[37].i
- line1.L[38].i
- line1.L[39].i
- line1.L[40].i
- line1.L[41].i
- line1.L[42].i
- line1.L[43].i
- line1.L[44].i
- line1.L[45].i
- line1.L[46].i
- line1.L[47].i
- line1.L[48].i
- line1.L[49].i
- line1.L[50].i
- line1.L[51].i
- line1.L[52].i
- line1.L[53].i
- line1.L[54].i
- line1.L[55].i
- line1.L[56].i
- line1.L[57].i
- line1.L[58].i
- line1.L[59].i
- line1.L[60].i
- line1.L[61].i
- line1.L[62].i
- line1.L[63].i
- line1.L[64].i
- line1.L[65].i
- line1.L[66].i
- line1.L[67].i
- line1.L[68].i
- line1.L[69].i
- line1.L[70].i
- line1.L[71].i
- line1.L[72].i
- line1.L[73].i
- line1.L[74].i
- line1.L[75].i
- line1.L[76].i
- line1.L[77].i
- line1.L[78].i
- line1.L[79].i
- line1.L[80].i
- line1.L[81].i
- line1.L[82].i
- line1.L[83].i
- line1.L[84].i
- line1.L[85].i
- line1.L[86].i
- line1.L[87].i
- line1.L[88].i
- line1.L[89].i
- line1.L[90].i
- line1.L[91].i
- line1.L[92].i
- line1.L[93].i
- line1.L[94].i
- line1.L[95].i
- line1.L[96].i
- line1.L[97].i
- line1.L[98].i
- line1.L[99].i
- line1.L[100].i
- line1.L[101].i
- line2.C[1].v
- line2.C[2].v
- line2.C[3].v
- line2.C[4].v
- line2.C[5].v
- line2.C[6].v
- line2.C[7].v
- line2.C[8].v
- line2.C[9].v
- line2.C[10].v
- line2.C[11].v
- line2.C[12].v
- line2.C[13].v
- line2.C[14].v
- line2.C[15].v
- line2.C[16].v
- line2.C[17].v
- line2.C[18].v
- line2.C[19].v
- line2.C[20].v
- line2.C[21].v
- line2.C[22].v
- line2.C[23].v
- line2.C[24].v
- line2.C[25].v
- line2.C[26].v
- line2.C[27].v
- line2.C[28].v
- line2.C[29].v
- line2.C[30].v
- line2.C[31].v
- line2.C[32].v
- line2.C[33].v
- line2.C[34].v
- line2.C[35].v
- line2.C[36].v
- line2.C[37].v
- line2.C[38].v
- line2.C[39].v
- line2.C[40].v
- line2.C[41].v
- line2.C[42].v
- line2.C[43].v
- line2.C[44].v
- line2.C[45].v
- line2.C[46].v
- line2.C[47].v
- line2.C[48].v
- line2.C[49].v
- line2.C[50].v
- line2.C[51].v
- line2.C[52].v
- line2.C[53].v
- line2.C[54].v
- line2.C[55].v
- line2.C[56].v
- line2.C[57].v
- line2.C[58].v
- line2.C[59].v
- line2.C[60].v
- line2.C[61].v
- line2.C[62].v
- line2.C[63].v
- line2.C[64].v
- line2.C[65].v
- line2.C[66].v
- line2.C[67].v
- line2.C[68].v
- line2.C[69].v
- line2.C[70].v
- line2.C[71].v
- line2.C[72].v
- line2.C[73].v
- line2.C[74].v
- line2.C[75].v
- line2.C[76].v
- line2.C[77].v
- line2.C[78].v
- line2.C[79].v
- line2.C[80].v
- line2.C[81].v
- line2.C[82].v
- line2.C[83].v
- line2.C[84].v
- line2.C[85].v
- line2.C[86].v
- line2.C[87].v
- line2.C[88].v
- line2.C[89].v
- line2.C[90].v
- line2.C[91].v
- line2.C[92].v
- line2.C[93].v
- line2.C[94].v
- line2.C[95].v
- line2.C[96].v
- line2.C[97].v
- line2.C[98].v
- line2.C[99].v
- line2.C[100].v
- line2.L[2].i
- line2.L[3].i
- line2.L[4].i
- line2.L[5].i
- line2.L[6].i
- line2.L[7].i
- line2.L[8].i
- line2.L[9].i
- line2.L[10].i
- line2.L[11].i
- line2.L[12].i
- line2.L[13].i
- line2.L[14].i
- line2.L[15].i
- line2.L[16].i
- line2.L[17].i
- line2.L[18].i
- line2.L[19].i
- line2.L[20].i
- line2.L[21].i
- line2.L[22].i
- line2.L[23].i
- line2.L[24].i
- line2.L[25].i
- line2.L[26].i
- line2.L[27].i
- line2.L[28].i
- line2.L[29].i
- line2.L[30].i
- line2.L[31].i
- line2.L[32].i
- line2.L[33].i
- line2.L[34].i
- line2.L[35].i
- line2.L[36].i
- line2.L[37].i
- line2.L[38].i
- line2.L[39].i
- line2.L[40].i
- line2.L[41].i
- line2.L[42].i
- line2.L[43].i
- line2.L[44].i
- line2.L[45].i
- line2.L[46].i
- line2.L[47].i
- line2.L[48].i
- line2.L[49].i
- line2.L[50].i
- line2.L[51].i
- line2.L[52].i
- line2.L[53].i
- line2.L[54].i
- line2.L[55].i
- line2.L[56].i
- line2.L[57].i
- line2.L[58].i
- line2.L[59].i
- line2.L[60].i
- line2.L[61].i
- line2.L[62].i
- line2.L[63].i
- line2.L[64].i
- line2.L[65].i
- line2.L[66].i
- line2.L[67].i
- line2.L[68].i
- line2.L[69].i
- line2.L[70].i
- line2.L[71].i
- line2.L[72].i
- line2.L[73].i
- line2.L[74].i
- line2.L[75].i
- line2.L[76].i
- line2.L[77].i
- line2.L[78].i
- line2.L[79].i
- line2.L[80].i
- line2.L[81].i
- line2.L[82].i
- line2.L[83].i
- line2.L[84].i
- line2.L[85].i
- line2.L[86].i
- line2.L[87].i
- line2.L[88].i
- line2.L[89].i
- line2.L[90].i
- line2.L[91].i
- line2.L[92].i
- line2.L[93].i
- line2.L[94].i
- line2.L[95].i
- line2.L[96].i
- line2.L[97].i
- line2.L[98].i
- line2.L[99].i
- line2.L[100].i
- line2.L[101].i
translate - Largest NL equation system
translate - Largest NL equation system
simulate - Open log
Log-file of program ./dymosim
(generated: Tue Feb 25 03:00:45 2025)
dymosim started
... "Modelica.Electrical.Analog.Examples.Lines.LightningSegmentedTransmissionLine" simulating
... "dsin.txt" loading (dymosim input file)
... "result.mat" creating (simulation result file)
Integration started at T = 0 using integration method DASSL
(DAE multi-step solver (dassl/dasslrt of Petzold modified by Dassault Systemes))
Integration terminated successfully at T = 0.025
CPU-time for integration : 11.7 seconds
CPU-time for one grid interval : 0.467 milliseconds
CPU-time for initialization : 0.001 seconds
Number of result points : 25002
Number of grid points : 25001
Number of accepted steps : 53872
Number of f-evaluations (dynamics) : 109302
Number of Jacobian-evaluations : 989
Number of model time events : 1
Number of input time events : 0
Number of state events : 0
Number of step events : 0
Minimum integration stepsize : 1.1e-11
Maximum integration stepsize : 8.3e-05
Maximum integration order : 5
Calling terminal section
... "dsfinal.txt" creating (final states)
SUCCESSFUL simulation of Modelica.Electrical.Analog.Examples.Lines.LightningSegmentedTransmissionLine
simulate - Open log
Log-file of program ./dymosim
(generated: Mon Feb 24 23:55:52 2025)
dymosim started
... "Modelica.Electrical.Analog.Examples.Lines.LightningSegmentedTransmissionLine" simulating
... "dsin.txt" loading (dymosim input file)
... "result.mat" creating (simulation result file)
Integration started at T = 0 using integration method DASSL
(DAE multi-step solver (dassl/dasslrt of Petzold modified by Dassault Systemes))
Integration terminated successfully at T = 0.025
CPU-time for integration : 11.7 seconds
CPU-time for one grid interval : 0.468 milliseconds
CPU-time for initialization : 0.001 seconds
Number of result points : 25002
Number of grid points : 25001
Number of accepted steps : 53872
Number of f-evaluations (dynamics) : 109302
Number of Jacobian-evaluations : 989
Number of model time events : 1
Number of input time events : 0
Number of state events : 0
Number of step events : 0
Minimum integration stepsize : 1.1e-11
Maximum integration stepsize : 8.3e-05
Maximum integration order : 5
Calling terminal section
... "dsfinal.txt" creating (final states)
SUCCESSFUL simulation of Modelica.Electrical.Analog.Examples.Lines.LightningSegmentedTransmissionLine