Check of Modelica.Electrical.Analog.Examples.Lines.SmoothStep
The model has the same number of unknowns and equations: 1935
Check of Modelica.Electrical.Analog.Examples.Lines.SmoothStep successful.
| MSL410 experiment tolerance | MSL410 tightend tolerance | |
|---|---|---|
| Testrun ID | 20250225023730 | 20250224233152 |
| Simulator | Dymola | Dymola |
| Status | PASS | PASS |
| Run time | 4.14 | 4.08 |
| Workdir | D:/MSL_Nightly/Output/Testruns/Dymola/Modelica_org\Modelica.Electrical.Analog.Examples.Lines.SmoothStep\WorkDir | D:/MSL_Nightly/Output/Testruns/Dymola/Modelica\Modelica.Electrical.Analog.Examples.Lines.SmoothStep\WorkDir |
| MSL410 experiment tolerance | MSL410 tightend tolerance | |
|---|---|---|
| Status | PASS | PASS |
| Task runtime | 0.52 s | 0.51 s |
| Warnings | 0 | 0 |
| Errors | 0 | 0 |
| Open log  | Open log  |
| MSL410 experiment tolerance | MSL410 tightend tolerance | |
|---|---|---|
| Status | PASS | PASS |
| Task runtime | 3.07 s | 3.03 s |
| Warnings | 0 | 0 |
| Errors | 0 | 0 |
| Open log  | Open log  | |
| Numerical Jacobians | 1 | 1 |
| Continuous time states | 116 | 116 |
| Number NL equation systems | 1 | 1 |
| Largest NL equation system | 2 | 2 |
| MSL410 experiment tolerance | MSL410 tightend tolerance | |
|---|---|---|
| Status | PASS | PASS |
| Task runtime | 0.52 s | 0.50 s |
| Simulation time | 0.00 s | 0.00 s |
| Copy result file path  | Copy result file path  | |
| Open log  | Open log  | |
| Time Events | 1 | 1 |
| State Events | 0 | 0 |
| Jacobian evaluations | 42 | 42 |
| Integrator Steps | 3943 | 3943 |
| Total CPU time | 0.11 s | 0.12 s |
| CPU time Integration | 0.11 s | 0.11 s |
| CPU time Initialization | 0.00 s | 0.00 s |
check - Open log
Check of Modelica.Electrical.Analog.Examples.Lines.SmoothStep
The model has the same number of unknowns and equations: 1935
Check of Modelica.Electrical.Analog.Examples.Lines.SmoothStep successful.
check - Open log
Check of Modelica.Electrical.Analog.Examples.Lines.SmoothStep
The model has the same number of unknowns and equations: 1935
Check of Modelica.Electrical.Analog.Examples.Lines.SmoothStep successful.
translate - Open log
Translation of Modelica.Electrical.Analog.Examples.Lines.SmoothStep
The DAE has 1935 scalar unknowns and 1935 scalar equations.
Statistics
Original Model
Number of components: 245
Variables: 2599
Parameters: 773 (885 scalars)
Unknowns: 1826 (1935 scalars)
Differentiated variables: 116 scalars
Equations: 1485
Nontrivial: 1239
Translated Model
Constants: 255 scalars
Free parameters: 34 scalars
Parameter depending: 841 scalars
Continuous time states: 116 scalars
Time-varying variables: 539 scalars
Alias variables: 1151 scalars
Number of mixed real/discrete systems of equations: 0
Sizes of linear systems of equations: { }
Sizes after manipulation of the linear systems: { }
Sizes of nonlinear systems of equations: {4}
Sizes after manipulation of the nonlinear systems: {2}
Number of numerical Jacobians: 1
Settings
Advanced.StoreProtectedVariables = true
Sparse solvers enabled: false
Enabled for integrator Jacobian: false
Model sparse and large enough: true.
Sparse solvers are available for dassl, lsodar, cvode, ida, radau, esdirk*, sdirk*.
Enable sparse solvers by setting Advanced.Translation.SparseActivate.
Selected continuous time states
Statically selected continuous time states
firstOrder.y
oLine1.C[1].v
oLine1.L[1].i
oLine1.L[2].i
oLine5.C[1].v
oLine5.C[2].v
oLine5.C[3].v
oLine5.C[4].v
oLine5.C[5].v
oLine5.L[1].i
oLine5.L[2].i
oLine5.L[3].i
oLine5.L[4].i
oLine5.L[5].i
oLine5.L[6].i
oLine50.C[1].v
oLine50.C[2].v
oLine50.C[3].v
oLine50.C[4].v
oLine50.C[5].v
oLine50.C[6].v
oLine50.C[7].v
oLine50.C[8].v
oLine50.C[9].v
oLine50.C[10].v
oLine50.C[11].v
oLine50.C[12].v
oLine50.C[13].v
oLine50.C[14].v
oLine50.C[15].v
oLine50.C[16].v
oLine50.C[17].v
oLine50.C[18].v
oLine50.C[19].v
oLine50.C[20].v
oLine50.C[21].v
oLine50.C[22].v
oLine50.C[23].v
oLine50.C[24].v
oLine50.C[25].v
oLine50.C[26].v
oLine50.C[27].v
oLine50.C[28].v
oLine50.C[29].v
oLine50.C[30].v
oLine50.C[31].v
oLine50.C[32].v
oLine50.C[33].v
oLine50.C[34].v
oLine50.C[35].v
oLine50.C[36].v
oLine50.C[37].v
oLine50.C[38].v
oLine50.C[39].v
oLine50.C[40].v
oLine50.C[41].v
oLine50.C[42].v
oLine50.C[43].v
oLine50.C[44].v
oLine50.C[45].v
oLine50.C[46].v
oLine50.C[47].v
oLine50.C[48].v
oLine50.C[49].v
oLine50.C[50].v
oLine50.L[1].i
oLine50.L[2].i
oLine50.L[3].i
oLine50.L[4].i
oLine50.L[5].i
oLine50.L[6].i
oLine50.L[7].i
oLine50.L[8].i
oLine50.L[9].i
oLine50.L[10].i
oLine50.L[11].i
oLine50.L[12].i
oLine50.L[13].i
oLine50.L[14].i
oLine50.L[15].i
oLine50.L[16].i
oLine50.L[17].i
oLine50.L[18].i
oLine50.L[19].i
oLine50.L[20].i
oLine50.L[21].i
oLine50.L[22].i
oLine50.L[23].i
oLine50.L[24].i
oLine50.L[25].i
oLine50.L[26].i
oLine50.L[27].i
oLine50.L[28].i
oLine50.L[29].i
oLine50.L[30].i
oLine50.L[31].i
oLine50.L[32].i
oLine50.L[33].i
oLine50.L[34].i
oLine50.L[35].i
oLine50.L[36].i
oLine50.L[37].i
oLine50.L[38].i
oLine50.L[39].i
oLine50.L[40].i
oLine50.L[41].i
oLine50.L[42].i
oLine50.L[43].i
oLine50.L[44].i
oLine50.L[45].i
oLine50.L[46].i
oLine50.L[47].i
oLine50.L[48].i
oLine50.L[49].i
oLine50.L[50].i
oLine50.L[51].i
Finished
translate - Open log
Translation of Modelica.Electrical.Analog.Examples.Lines.SmoothStep
The DAE has 1935 scalar unknowns and 1935 scalar equations.
Statistics
Original Model
Number of components: 245
Variables: 2599
Parameters: 773 (885 scalars)
Unknowns: 1826 (1935 scalars)
Differentiated variables: 116 scalars
Equations: 1485
Nontrivial: 1239
Translated Model
Constants: 255 scalars
Free parameters: 34 scalars
Parameter depending: 841 scalars
Continuous time states: 116 scalars
Time-varying variables: 539 scalars
Alias variables: 1151 scalars
Number of mixed real/discrete systems of equations: 0
Sizes of linear systems of equations: { }
Sizes after manipulation of the linear systems: { }
Sizes of nonlinear systems of equations: {4}
Sizes after manipulation of the nonlinear systems: {2}
Number of numerical Jacobians: 1
Settings
Advanced.StoreProtectedVariables = true
Sparse solvers enabled: false
Enabled for integrator Jacobian: false
Model sparse and large enough: true.
Sparse solvers are available for dassl, lsodar, cvode, ida, radau, esdirk*, sdirk*.
Enable sparse solvers by setting Advanced.Translation.SparseActivate.
Selected continuous time states
Statically selected continuous time states
firstOrder.y
oLine1.C[1].v
oLine1.L[1].i
oLine1.L[2].i
oLine5.C[1].v
oLine5.C[2].v
oLine5.C[3].v
oLine5.C[4].v
oLine5.C[5].v
oLine5.L[1].i
oLine5.L[2].i
oLine5.L[3].i
oLine5.L[4].i
oLine5.L[5].i
oLine5.L[6].i
oLine50.C[1].v
oLine50.C[2].v
oLine50.C[3].v
oLine50.C[4].v
oLine50.C[5].v
oLine50.C[6].v
oLine50.C[7].v
oLine50.C[8].v
oLine50.C[9].v
oLine50.C[10].v
oLine50.C[11].v
oLine50.C[12].v
oLine50.C[13].v
oLine50.C[14].v
oLine50.C[15].v
oLine50.C[16].v
oLine50.C[17].v
oLine50.C[18].v
oLine50.C[19].v
oLine50.C[20].v
oLine50.C[21].v
oLine50.C[22].v
oLine50.C[23].v
oLine50.C[24].v
oLine50.C[25].v
oLine50.C[26].v
oLine50.C[27].v
oLine50.C[28].v
oLine50.C[29].v
oLine50.C[30].v
oLine50.C[31].v
oLine50.C[32].v
oLine50.C[33].v
oLine50.C[34].v
oLine50.C[35].v
oLine50.C[36].v
oLine50.C[37].v
oLine50.C[38].v
oLine50.C[39].v
oLine50.C[40].v
oLine50.C[41].v
oLine50.C[42].v
oLine50.C[43].v
oLine50.C[44].v
oLine50.C[45].v
oLine50.C[46].v
oLine50.C[47].v
oLine50.C[48].v
oLine50.C[49].v
oLine50.C[50].v
oLine50.L[1].i
oLine50.L[2].i
oLine50.L[3].i
oLine50.L[4].i
oLine50.L[5].i
oLine50.L[6].i
oLine50.L[7].i
oLine50.L[8].i
oLine50.L[9].i
oLine50.L[10].i
oLine50.L[11].i
oLine50.L[12].i
oLine50.L[13].i
oLine50.L[14].i
oLine50.L[15].i
oLine50.L[16].i
oLine50.L[17].i
oLine50.L[18].i
oLine50.L[19].i
oLine50.L[20].i
oLine50.L[21].i
oLine50.L[22].i
oLine50.L[23].i
oLine50.L[24].i
oLine50.L[25].i
oLine50.L[26].i
oLine50.L[27].i
oLine50.L[28].i
oLine50.L[29].i
oLine50.L[30].i
oLine50.L[31].i
oLine50.L[32].i
oLine50.L[33].i
oLine50.L[34].i
oLine50.L[35].i
oLine50.L[36].i
oLine50.L[37].i
oLine50.L[38].i
oLine50.L[39].i
oLine50.L[40].i
oLine50.L[41].i
oLine50.L[42].i
oLine50.L[43].i
oLine50.L[44].i
oLine50.L[45].i
oLine50.L[46].i
oLine50.L[47].i
oLine50.L[48].i
oLine50.L[49].i
oLine50.L[50].i
oLine50.L[51].i
Finished
translate - Continuous time states
- firstOrder.y
- oLine1.C[1].v
- oLine1.L[1].i
- oLine1.L[2].i
- oLine5.C[1].v
- oLine5.C[2].v
- oLine5.C[3].v
- oLine5.C[4].v
- oLine5.C[5].v
- oLine5.L[1].i
- oLine5.L[2].i
- oLine5.L[3].i
- oLine5.L[4].i
- oLine5.L[5].i
- oLine5.L[6].i
- oLine50.C[1].v
- oLine50.C[2].v
- oLine50.C[3].v
- oLine50.C[4].v
- oLine50.C[5].v
- oLine50.C[6].v
- oLine50.C[7].v
- oLine50.C[8].v
- oLine50.C[9].v
- oLine50.C[10].v
- oLine50.C[11].v
- oLine50.C[12].v
- oLine50.C[13].v
- oLine50.C[14].v
- oLine50.C[15].v
- oLine50.C[16].v
- oLine50.C[17].v
- oLine50.C[18].v
- oLine50.C[19].v
- oLine50.C[20].v
- oLine50.C[21].v
- oLine50.C[22].v
- oLine50.C[23].v
- oLine50.C[24].v
- oLine50.C[25].v
- oLine50.C[26].v
- oLine50.C[27].v
- oLine50.C[28].v
- oLine50.C[29].v
- oLine50.C[30].v
- oLine50.C[31].v
- oLine50.C[32].v
- oLine50.C[33].v
- oLine50.C[34].v
- oLine50.C[35].v
- oLine50.C[36].v
- oLine50.C[37].v
- oLine50.C[38].v
- oLine50.C[39].v
- oLine50.C[40].v
- oLine50.C[41].v
- oLine50.C[42].v
- oLine50.C[43].v
- oLine50.C[44].v
- oLine50.C[45].v
- oLine50.C[46].v
- oLine50.C[47].v
- oLine50.C[48].v
- oLine50.C[49].v
- oLine50.C[50].v
- oLine50.L[1].i
- oLine50.L[2].i
- oLine50.L[3].i
- oLine50.L[4].i
- oLine50.L[5].i
- oLine50.L[6].i
- oLine50.L[7].i
- oLine50.L[8].i
- oLine50.L[9].i
- oLine50.L[10].i
- oLine50.L[11].i
- oLine50.L[12].i
- oLine50.L[13].i
- oLine50.L[14].i
- oLine50.L[15].i
- oLine50.L[16].i
- oLine50.L[17].i
- oLine50.L[18].i
- oLine50.L[19].i
- oLine50.L[20].i
- oLine50.L[21].i
- oLine50.L[22].i
- oLine50.L[23].i
- oLine50.L[24].i
- oLine50.L[25].i
- oLine50.L[26].i
- oLine50.L[27].i
- oLine50.L[28].i
- oLine50.L[29].i
- oLine50.L[30].i
- oLine50.L[31].i
- oLine50.L[32].i
- oLine50.L[33].i
- oLine50.L[34].i
- oLine50.L[35].i
- oLine50.L[36].i
- oLine50.L[37].i
- oLine50.L[38].i
- oLine50.L[39].i
- oLine50.L[40].i
- oLine50.L[41].i
- oLine50.L[42].i
- oLine50.L[43].i
- oLine50.L[44].i
- oLine50.L[45].i
- oLine50.L[46].i
- oLine50.L[47].i
- oLine50.L[48].i
- oLine50.L[49].i
- oLine50.L[50].i
- oLine50.L[51].i
translate - Continuous time states
- firstOrder.y
- oLine1.C[1].v
- oLine1.L[1].i
- oLine1.L[2].i
- oLine5.C[1].v
- oLine5.C[2].v
- oLine5.C[3].v
- oLine5.C[4].v
- oLine5.C[5].v
- oLine5.L[1].i
- oLine5.L[2].i
- oLine5.L[3].i
- oLine5.L[4].i
- oLine5.L[5].i
- oLine5.L[6].i
- oLine50.C[1].v
- oLine50.C[2].v
- oLine50.C[3].v
- oLine50.C[4].v
- oLine50.C[5].v
- oLine50.C[6].v
- oLine50.C[7].v
- oLine50.C[8].v
- oLine50.C[9].v
- oLine50.C[10].v
- oLine50.C[11].v
- oLine50.C[12].v
- oLine50.C[13].v
- oLine50.C[14].v
- oLine50.C[15].v
- oLine50.C[16].v
- oLine50.C[17].v
- oLine50.C[18].v
- oLine50.C[19].v
- oLine50.C[20].v
- oLine50.C[21].v
- oLine50.C[22].v
- oLine50.C[23].v
- oLine50.C[24].v
- oLine50.C[25].v
- oLine50.C[26].v
- oLine50.C[27].v
- oLine50.C[28].v
- oLine50.C[29].v
- oLine50.C[30].v
- oLine50.C[31].v
- oLine50.C[32].v
- oLine50.C[33].v
- oLine50.C[34].v
- oLine50.C[35].v
- oLine50.C[36].v
- oLine50.C[37].v
- oLine50.C[38].v
- oLine50.C[39].v
- oLine50.C[40].v
- oLine50.C[41].v
- oLine50.C[42].v
- oLine50.C[43].v
- oLine50.C[44].v
- oLine50.C[45].v
- oLine50.C[46].v
- oLine50.C[47].v
- oLine50.C[48].v
- oLine50.C[49].v
- oLine50.C[50].v
- oLine50.L[1].i
- oLine50.L[2].i
- oLine50.L[3].i
- oLine50.L[4].i
- oLine50.L[5].i
- oLine50.L[6].i
- oLine50.L[7].i
- oLine50.L[8].i
- oLine50.L[9].i
- oLine50.L[10].i
- oLine50.L[11].i
- oLine50.L[12].i
- oLine50.L[13].i
- oLine50.L[14].i
- oLine50.L[15].i
- oLine50.L[16].i
- oLine50.L[17].i
- oLine50.L[18].i
- oLine50.L[19].i
- oLine50.L[20].i
- oLine50.L[21].i
- oLine50.L[22].i
- oLine50.L[23].i
- oLine50.L[24].i
- oLine50.L[25].i
- oLine50.L[26].i
- oLine50.L[27].i
- oLine50.L[28].i
- oLine50.L[29].i
- oLine50.L[30].i
- oLine50.L[31].i
- oLine50.L[32].i
- oLine50.L[33].i
- oLine50.L[34].i
- oLine50.L[35].i
- oLine50.L[36].i
- oLine50.L[37].i
- oLine50.L[38].i
- oLine50.L[39].i
- oLine50.L[40].i
- oLine50.L[41].i
- oLine50.L[42].i
- oLine50.L[43].i
- oLine50.L[44].i
- oLine50.L[45].i
- oLine50.L[46].i
- oLine50.L[47].i
- oLine50.L[48].i
- oLine50.L[49].i
- oLine50.L[50].i
- oLine50.L[51].i
translate - Largest NL equation system
- 2
translate - Largest NL equation system
- 2
simulate - Open log
Log-file of program ./dymosim
(generated: Tue Feb 25 03:00:42 2025)
dymosim started
... "Modelica.Electrical.Analog.Examples.Lines.SmoothStep" simulating
... "dsin.txt" loading (dymosim input file)
... "result.mat" creating (simulation result file)
Integration started at T = 0 using integration method DASSL
(DAE multi-step solver (dassl/dasslrt of Petzold modified by Dassault Systemes))
Integration terminated successfully at T = 0.003
CPU-time for integration : 0.113 seconds
CPU-time for one grid interval : 0.0377 milliseconds
CPU-time for initialization : 0.001 seconds
Number of result points : 3003
Number of grid points : 3001
Number of accepted steps : 3943
Number of f-evaluations (dynamics) : 7859
Number of Jacobian-evaluations : 42
Number of model time events : 1
Number of input time events : 0
Number of state events : 0
Number of step events : 0
Minimum integration stepsize : 5.39e-15
Maximum integration stepsize : 6.89e-05
Maximum integration order : 5
Calling terminal section
... "dsfinal.txt" creating (final states)
SUCCESSFUL simulation of Modelica.Electrical.Analog.Examples.Lines.SmoothStep
simulate - Open log
Log-file of program ./dymosim
(generated: Mon Feb 24 23:55:48 2025)
dymosim started
... "Modelica.Electrical.Analog.Examples.Lines.SmoothStep" simulating
... "dsin.txt" loading (dymosim input file)
... "result.mat" creating (simulation result file)
Integration started at T = 0 using integration method DASSL
(DAE multi-step solver (dassl/dasslrt of Petzold modified by Dassault Systemes))
Integration terminated successfully at T = 0.003
CPU-time for integration : 0.114 seconds
CPU-time for one grid interval : 0.038 milliseconds
CPU-time for initialization : 0.001 seconds
Number of result points : 3003
Number of grid points : 3001
Number of accepted steps : 3943
Number of f-evaluations (dynamics) : 7859
Number of Jacobian-evaluations : 42
Number of model time events : 1
Number of input time events : 0
Number of state events : 0
Number of step events : 0
Minimum integration stepsize : 5.39e-15
Maximum integration stepsize : 6.89e-05
Maximum integration order : 5
Calling terminal section
... "dsfinal.txt" creating (final states)
SUCCESSFUL simulation of Modelica.Electrical.Analog.Examples.Lines.SmoothStep